
ar
X

iv
:1

10
1.

42
39

v1
  [

he
p-

la
t]

  2
1 

Ja
n 

20
11

BNL-94608-2011-JA

YITP-11-6

Aoki Phases in the Lattice Gross-Neveu Model

with Flavored Mass terms

Michael Creutz∗

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Taro Kimura†

Department of Basic Science, University of Tokyo, Tokyo 153-8902, Japan

Tatsuhiro Misumi‡

Yukawa Institute for Theoretical Physics,

Kyoto University, Kyoto 606-8502, Japan

We investigate the parity-broken phase structure for staggered and naive fermions

in the Gross-Neveu model as a toy model of QCD. We consider a generalized stag-

gered Gross-Neveu model including two types of four-point interactions. We use

generalized mass terms to split the doublers for both staggered and naive fermions.

The phase boundaries derived from the gap equations show that the mass splitting of

tastes results in an Aoki phase both in the staggered and naive cases. We also discuss

the continuum limit of these models and explore taking the chirally-symmetric limit

by fine-tuning a mass parameter and two coupling constants. This supports the idea

that in lattice QCD we can derive one- or two-flavor staggered fermions by tuning

the mass parameter, which are likely to be less expensive than Wilson fermions in

QCD simulation.

∗Electronic address: creutz@bnl.gov
†Electronic address: kimura@dice.c.u-tokyo.ac.jp
‡Electronic address: misumi@yukawa.kyoto-u.ac.jp

http://arxiv.org/abs/1101.4239v1
mailto:creutz@bnl.gov
mailto:kimura@dice.c.u-tokyo.ac.jp
mailto:misumi@yukawa.kyoto-u.ac.jp


2

I. INTRODUCTION

Since the pioneering work in Ref. [1], the rich phase structure in the lattice Wilson fermion

has been extensively studied [2–6]. As is well-known [7], Wilson fermions bypass the no-go

theorem [8] and produce a single fermionic degree of freedom by breaking the chiral symmetry

explicitly. This leads to an additive mass renormalization and requires fine-tuning of a mass

parameter for a chiral limit. Furthermore at finite lattice spacing, there emerges a parity-

broken phase (Aoki phase) [1]. The full phase diagram reflects the masses possessed by each

of the original doublers. As seen from this fact, the main reason for the emergence of the

parity-broken phase is that the Wilson term gives a species(taste)-sensitive mass to produce

a mass splitting of species as well as breaking the chiral symmetry. The understanding of

the parity-broken phase structure is not only useful for simulations with Wilson fermions,

but also gives practical information for the application of overlap [9, 10] and domain-wall

[11, 12] fermions, both of which are built on the Wilson fermion kernel. Indeed it is shown in

[13] that the domain-wall fermion also possesses a complicated parity broken phase diagram

for a finite size of the extra dimension.

On the other hand, no parity-broken phase structure is observed in staggered fermions

[14–16] with their exact chiral symmetry. However things could be changed if we introduce

a taste-sensitive mass term, which we refer to as a taste-splitting or flavored mass in this

paper. Adams recently established theoretical foundation of the index theorem with stag-

gered fermions [17] and presented a new version of the overlap fermion constructed from the

staggered kernel [18, 19]. He introduced a taste-splitting mass term for the spectral flow to

detect the index correctly. This mass term assigns positive and negative masses to tastes

depending on their flavor-chiralities. After these works the present authors [20] successfully

defined the index in the naive and minimally doubled fermions [21–24] and presented new

versions of overlap fermions by implementing the flavored mass terms [25]. It is natural to

consider the phase diagram for these fermions with the mass splitting of the tastes since it

is also useful for the practical application of their overlap versions as well as themselves.

In this paper we study the parity-broken phase structure for naive and staggered fermions

with the flavored mass terms. We use the two-dimensional lattice Gross-Neveu models

[3, 26, 27] as toy models of QCD. We develop the generalized staggered Gross-Neveu model

including two types of four-point interactions to study the staggered phase structure. We
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solve the gap equations for the large N limit and obtain the phase boundaries in the M-g2

plane. We show the Aoki phase exists both in staggered and naive cases reflecting the mass

splitting of tastes. In the naive cases there are varieties of the phase diagram depending

on linear combinations of two types of the flavored masses. This elucidation of the phase

structure can contribute to the practical application of these fermions and their overlap

versions. We also discuss the continuum limits of these Gross-Neveu models around the

cusps of the phase diagram. We show that we can take the chirally-symmetric continuum

limit with the associated number of massless fermions by fine-tuning a mass parameter and

two coupling constants. It indicates that in the four dimension we can obtain the two- or

one-flavor staggered fermions by tuning the mass parameter without the rooting procedure

when we introduce the Adams-type [18] or Hoelbling-type [19] flavored masses. They are

likely to be less expensive than Wilson fermions in lattice QCD simulations.

In Sec. II we study the parity broken phase diagram by using the naive Gross-Neveu

model with the flavored mass. In Sec. III we propose the generalized staggered Gross-Neveu

model and study the phase diagram. In Sec. IV we investigate the continuum limit of these

models and discuss the first order phase phase boundaries in the phase diagram. Section V

is devoted to a summary and discussion.

II. NAIVE GROSS-NEVEU MODEL

In this section we investigate the phase diagram for naive lattice fermions with flavored

mass terms by using the d = 2 Gross-Neveu model, which has lots of common features with

QCD. Let us begin with the lattice Gross-Neveu model with the flavored mass term, which

is given by

S =
1

2

∑

n,µ

ψ̄nγµ(ψn+µ − ψn−µ)−
g2

2N

∑

n

[(ψ̄nψn)
2 + (ψ̄niγ5ψn)

2]

+
∑

n,m

ψ̄n(Mδnm + (Mf )n,m)ψm, (1)

where µ stands for µ = 1, 2, n = (n1, n2) are the two dimensional coordinates and ψn stands

for a N -component Dirac fermion field (ψn)j(j = 1, 2, ..., N). We note the bilinear ψ̄ψ means
∑N

j=1 ψ̄jψj . g
2 corresponds to the ’t Hooft coupling. M is a usual mass assigning the same

mass to species while (Mf )n,m is a flavored mass assigning different masses to them. Here
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we define the two dimensional gamma matrices as γ1 = σ1, γ2 = σ2 and γ5 = σ3. We make

all the quantities dimensionless in this equation. By introducing auxiliary bosonic fields σn,

πn we remove the four-point interactions as

S =
1

2

∑

n,µ

ψ̄nγµ(ψn+µ − ψn−µ) +
∑

n,m

ψ̄n(Mf)n,mψm

+
N

2g2

∑

n

((σn −M)2 + π2
n) +

∑

n

ψ̄n(σn + iγ5πn)ψn. (2)

By solving the equations of motion, we show the following relation between these auxiliary

fields and the bilinears of the fermion fields

σn =M −
g2

N
ψ̄ψ, (3)

πn = −
g2

N
ψ̄iγ5ψ. (4)

These relations indicate how σ and π stand for the scalar and pseudo-scalar mesons. After

integrating the fermion fields, the partition function and the effective action with these

auxiliary fields are given by

Z =

∫

∏

n

(dσndπn)e
−N Seff (σ,π), (5)

Seff(σn, πn) =
1

2g2

∑

n

((σn −M)2 + π2
n)− Tr logDn,m, (6)

with

Dn,m = (σn + iγ5πn)δn.m +
γµ
2
(δn+µ,m − δn−µ,m) + (Mf)n,m. (7)

Here Tr stands for the trace both for the position and spinor spaces. As is well-known, the

partition function in the Gross-Neveu model is given by the saddle point of this effective

action in the large N limit. We denote as σ̃n, π̃n solutions satisfying the saddle-point

conditions
δSeff(σn, πn)

δσn
=

δSeff(σn, πn)

δπn
= 0. (8)

Then the partition function is given by

Z = e−Seff (σ̃,π̃). (9)

By assuming the translational invariance we define the position-independent solutions as

σ0 ≡ σ̃0 and π0 ≡ π̃0 Then we can factorize a volume factor V =
∑

n 1 in the effective action
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as

Seff = V S̃eff(σ0, π0), (10)

S̃eff(σ0, π0) =
1

2g2
((σ0 −M)2 + π2

0)−
1

V
Tr logD. (11)

We can write Tr logD in a simple form by the Fourier transformation to momentum space

Tr logD = V

∫

d2k

(2π)2
log[det(σ0 + iγ5π0 +Mf (k) + i

∑

µ

γµ sin kµ)]

= V

∫

d2k

(2π)2
log[(σ0 +Mf (k))

2 + π2
0 + s2], (12)

with det being the determinant in the spinor space and s2 =
∑

µ sin
2 kµ. Mf (k) is the

flavored mass represented in momentum space. Now the saddle-point equations are written

as

δS̃eff

δσ0
=

(σ0 −M)

g2
− 2

∫

d2k

(2π)2
σ0 +Mf (k)

(σ0 +Mf (k))2 + π2
0 + s2

= 0, (13)

δS̃eff

δπ0
=

π0
g2

− 2

∫

d2k

(2π)2
π0

(σ0 +Mf (k))2 + π2
0 + s2

= 0. (14)

In this section we consider two types of the flavored mass for the naive fermion

M
(1)
f (k) = cos k1 cos k2, (15)

M
(2)
f (k) =

1

2
(cos k1 + cos k2)(1 + cos k1 cos k2). (16)

Such mass terms were first introduced in the minimally doubled fermion by using the point-

splitting method [25]. Then these were introduced also for the naive fermion to consider

the index theorem and a new type of overlap fermions [20]. Studying the phase diagram

with these flavored mass terms not only contributes to understanding the overlap versions

but also helps to understand the staggered case in the next section. Here σ0 and π0 are

determined as σ0(M, g2), π0(M, g2) from the saddle-point equations once the values of M

and g2 are fixed.

Let us look into the phase structure with respect to parity symmetry. The order parameter

of this symmetry is π0, which can take zero or non-zero values depending on values of M

and g2. Parity symmetry is spontaneously broken for the non-zero cases π0 6= 0. The phase

boundary is determined by imposing π0 = 0 on Eq. (13)(14) after the overall π0 being
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removed in Eq. (14) . Then the conditions for the phase boundary, so-called gap equations,

are given by

Mc

g2
= −2

∫

d2k

(2π)2
Mf (k)

(σ0 +Mf (k))2 + s2
, (17)

1

g2
= 2

∫

d2k

(2π)2
1

(σ0 +Mf(k))2 + s2
, (18)

with Mc being the critical value of M . As we will check later, this phase boundary is a

second-order critical line. Here we derive the parity phase boundary Mc(g
2) as a function

of the coupling g2 by getting rid of the chiral condensate σ0 from these equations. We will

calculate the parity phase boundaries for three cases of the flavored masses M
(1)
f , M

(2)
f and

M
(1)
f +M

(2)
f .

A. M
(1)
f

The lattice fermion action with this flavored mass assigns the positive mass m = 1 to

two species with the momentum (0, 0)(π, π) and the negative mass m = −1 to the other two

species with (0, π)(π, 0). Before calculating Mc(g
2) numerically, we can anticipate the phase

structure from the symmetry of the gap equations. To see this we replace k1 by π − k1 in

(13) and (14) for M
(1)
f . Then the equations are converted into

−σ0 +M

g2
= 2

∫

d2k

(2π)2
−σ0 +M

(1)
f (k)

(−σ0 +M
(1)
f (k))2 + π2

0 + s2
, (19)

π0
g2

= 2

∫

d2k

(2π)2
π0

(−σ0 +M
(1)
f (k))2 + π2

0 + s2
. (20)

Thus, if (σ0, π0) are solutions for (M , g2), (−σ0, π0) are solutions for (−M , g2). It also

means, if (Mc, g
2) is a critical point, (−Mc, g

2) too. We can anticipate the phase diagram

for this case is symmetric about M = 0. Now we derive the parity phase boundary Mc(g
2)

numerically forM
(1)
f (k) = cos k1 cos k2. The phase diagram for this case is depicted in Fig. 1.

A stands for the parity symmetric phase π0 = 0 and B for Aoki phase π0 6= 0. In the large

coupling region there are two phase boundaries while there are four phase boundaries in the

weak coupling region. The left and right cusps correspond to two species (0, 0)(π, π) with

the positive mass (m = 1) and the other two (0, π)(π, 0) with the negative mass (m = −1)

respectively. It reflects the mass splitting of species given by the flavored mass M
(1)
f . Here
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FIG. 1: Aoki phase structure for the naive fermion with the flavored mass M
(1)
f . The left and right

cusps are related to two species (0, 0)(π, π) with m = 1 and the other two (0, π)(π, 0) with m = −1

respectively. A and B stands for parity-symmetric and -broken phases.

we note we obtain the same result for −M (1)
f except that the species (0, 0)(π, π) live at the

right cusp and the other two live at the left. It means the sign of the this flavored mass is

irrelevant for the spectrum of the Dirac operator or the associated Aoki phase.

B. M
(2)
f

The lattice fermion action with this flavored mass assigns the positive mass (m = 2) to

one of four species with the momentum (0, 0), zero mass to (0, π)(π, 0) and the negative

mass (m = −2) to (π, π). To look at the symmetry of the gap equations we replace kµ by

π − kµ in (13) and (14) for M
(2)
f . Then the equations are converted into

−σ0 +M

g2
= 2

∫

d2k

(2π)2
−σ0 +M

(2)
f (k)

(−σ0 +M
(2)
f (k))2 + π2

0 + s2
, (21)

π0
g2

= 2

∫

d2k

(2π)2
π0

(−σ0 +M
(2)
f (k))2 + π2

0 + s2
. (22)

Thus, if (σ0, π0) are solutions for (M , g2), (−σ0, π0) are solutions for (−M , g2). It also

means, if (Mc, g
2) is a critical point, (−Mc, g

2) too. We can anticipate the phase diagram

for this case is again symmetric about M = 0. Now we derive the parity phase boundary

Mc(g
2) numerically for M

(2)
f (k) = (cos k1+cos k2)(1+ cos k1 cos k2)/2. In the large coupling

region there are two phase boundaries while there are six phase boundaries in the weak

coupling region. The three cusps correspond to one of four species (0, 0) with m = 2, two of
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FIG. 2: Aoki phase structure for the naive fermion with the flavored mass M
(2)
f . The three cusps

correspond to (0, 0) with m = 2, (0, π)(π, 0) with m = 0 and (π, π) with m = −2 respectively from

the left.

them (0, π)(π, 0) with m = 0 and the other one (π, π) with m = −2 respectively from the

left. It reflects the mass splitting of species given by the flavored mass M
(2)
f .

C. M
(1)
f +M

(2)
f

The fermion action with this flavored mass assigns the positive mass m = 3 to one of

species with the momentum (0, 0) and the negative mass m = −1 to the other three species

with (0, π)(π, 0)(π, π). Here we cannot find any relevant symmetry in the gap equations.

Thus we can anticipate the phase diagram for this case is not symmetric. Now we calculate

Mc(g
2) numerically for M

(1)
f +M

(2)
f (k) = cos k1 cos k2 + (cos k1 + cos k2)(1 + cos k1 cos k2)/2.

The result of the phase diagram is depicted in Fig. 3. It is obvious that it is not symmetric

about M = 0. In the large coupling region there are two phase boundaries while there are

four phase boundaries in the weak coupling region. The left and right cusps correspond

to one of species (0, 0) with m = 3 and the other three (0, π)(π, 0)(π, π) with m = −1

respectively. It reflects the mass splitting of species given by the flavored mass M
(1)
f +M

(2)
f .

Now we can easily modify the phase diagram by choosing the linear combination of M
(1)
f

and M
(2)
f .

We expect these results are qualitatively similar to the phase diagram of the d = 4 fermion

actions with the Non-abelian gauge field like QCD except for the number of species associated

with each cusp. In the end of this section we check the mass of the π-meson becomes zero

on the critical line Mc(g
2). As is well-known, the correlation length gets infinitely large in
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FIG. 3: Aoki phase structure for the naive fermion with the flavored mass M
(1)
f +M

(2)
f . The left

and right cusps correspond to (0, 0) with m = 3 and (0, π)(π, 0)(π, π) with m = −1 respectively.

the vicinity of the second and higher phase boundaries, which leads to massless dynamical

degrees of freedom. In the case of lattice QCD with chiral-symmetry-broken fermions, the

fine-tuning of the mass parameter to the 2nd order phase boundary leads to the chirally

symmetric continuum limit with massless quarks and pions. Thus it is quite important to

verify it. We can show the mass of πn becomes zero on the phase boundaries as

m2
π ∝ 〈

δ2Seff

δπnδπm
〉|M=Mc

= V
δ2S̃eff

δ2π2
0

|M=Mc

= V
[ 1

g2
− 2

∫

d2k

(2π)2
1

(σ0 +Mf (k))2 + π2
0 + s2

− (2π2
0)

∫

d2k

(2π)2
1

((σ0 +Mf (k))2 + π2
0 + s2)2

]

|π0=0

= 0. (23)

The zero mass of the pion means the phase boundary we derived is the second-order critical

line. We can also check the order of the phase boundaries by depicting the potential for σ0

and π0 as we will discuss in Sec. IV.

III. STAGGERED GROSS-NEVEU MODEL

In this section we investigate the phase diagram for staggered fermions with the Adams-

type flavored mass term by using the d = 2 Gross-Neveu model. To study the parity broken

phase structure we propose the generalized staggered Gross-Neveu model with the γ5-type
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4-point interaction, which is given by

S =
1

2

∑

n,µ

ηµχ̄n(χn+µ − χn−µ) +
∑

n

χ̄n(M +Mf)χn

−
g2

2N

∑

N

[

(
∑

A

χ̄2N+A χ2N+A)
2 + (

∑

A

i(−1)A1+A2χ̄2N+A χ2N+A)
2
]

, (24)

where we define two-dimensional coordinates as n = 2N+A with the sublattice A = (A1, A2)

(A1,2 = 0, 1). χn is a one-component fermionic field. (−1)A1+A2 corresponds to the natural

definition of γ5 for this fermion which is expressed as Γ55 = γ5 ⊗ γ5 in the spinor-taste

expression. ηµ = (−1)n1+...+nµ−1 corresponds to γµ. As the flavored mass term we choose

the Adams-type one, which is given by

Mf = Γ5Γ55 ∼ 1⊗ γ5 +O(a) (25)

with the following chirality matrix Γ5

Γ5 = −iη1η2
∑

sym

C1C2, (26)

Cµ =
1

2
(Tµ + T−µ) (27)

where Tµ is the usual translation operator. (The chirality matrix in general dimensions is

defined as Γ5 ≡ −(i)d/2η1 · · · ηd
∑

sym C1 · · · Cd.) This mass term assigns the positive mass

(m = +1) to one taste and the negative mass (m = −1) to the other depending on ±

eigenvalues for Γ5Γ55 which we call the flavor-chirality. With bosonic auxiliary fields σN ,

πN , the action is rewritten as

S =
1

2

∑

n,µ

ηµχ̄n(χn+µ − χn−µ) +
∑

n

χ̄nMfχn

+
N

2g2

∑

N

((σN −M)2 + π2
N ) +

∑

N ,A

χ̄2N+A(σN + i(−1)A1+A2πN )χ2N+A, (28)

After integrating the fermion field, the partition function and the effective action with these

auxiliary fields are given by

Z =

∫

(DσNDπN )e−N Seff (σ,π), (29)

Seff =
1

2g2

∑

N

(σ2
N + π2

N )− Tr logD, (30)
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with

Dn,m = (σN + i(−1)A1+A2πN )δn,m +
ηµ
2
(δn+µ,m − δn−µ,m) + (Mf )n,m. (31)

The process from (8) to (11) in the case of the naive fermion is common with this staggered

case. We again denote as σ0 and π0 the position-independent solutions of the saddle-point

equations. In this case, however, it is not straightforward to derive the Tr logD with the

Dirac operator (31) in the effective action Eq. (11). In order to estimate this trace logarithm

we first obtain the determinant of the Dirac operator in the sublattice space, which means

the determinant in the spinor and taste spaces. Here we express the sublattice structure as

a multiplet field χ̃N composed of the four one-component fields as

χ̃N =















χi

χii

χiii

χiv















(32)

where we mean i = 2N , ii = 2N + (1, 0), iii = 2N + (0, 1) and iv = 2N + (1, 1). Now let us

estimate the trace term

Tr logD = V

∫

dk2

(2π)2
log det((D(k))ab, (33)

where a, b stand for the index of the four sublattices running from i to iv. Here det means

the determinant with respect to the sublattice. The Dirac operator is given by

(D(k))ab = σ0δab +















+

−

−

+















iπ0

+ i















+

+

−

−















cos
k1
2
cos

k2
2

+















0 i sin k1
2

i sin k2
2

0

i sin k1
2

0 0 −i sin k2
2

i sin k2
2

0 0 i sin k1
2

0 −i sin k2
2
i sin k1

2
0















. (34)
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Then detD is given by

det(D(k))ab = (σ2
0 + π2

0 + s2)2 − 2c21c
2
2(σ

2
0 − π2

0 − s2) + c41c
4
2

= ((σ0 + c1c2)
2 + π2

0 + s2)((σ0 − c1c2)
2 + π2

0 + s2), (35)

where sµ = sin kµ/2, s
2 =

∑

µ s
2
µ, cµ = cos kµ/2. It is notable that this determinant is

expressed by the product of the two determinants of the naive fermions with the flavored

mass ±M (1)
f (kµ/2). Now we can explicitly write the saddle-point conditions satisfied by σ0

and π0 as

σ0 −M

g2
= 4

∫

dk2

(2π)2
σ0(σ

2
0 + π2

0 + s2)− c21c
2
2σ0

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
, (36)

π0
g2

= 4

∫

dk2

(2π)2
π0(σ

2
0 + π2

0 + s2) + c21c
2
2π0

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
. (37)

By multiplying −1 to the first equation, we see (−σ0, π0) are solutions for (−M , g2) if (σ0,

π0) are solutions for (M , g2). It also means, if (Mc, g
2) is a critical point, (−Mc, g

2) too.

The phase diagram will be symmetric about M = 0. The parity phase boundary Mc(g
2) in

this case is derived by imposing π0 = 0 in (36)(37) after the overall π0 being removed in the

second one. Then the gap equations are given by

Mc

g2
= 4

∫

dk2

(2π)2
2c21c

2
2σ0

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
, (38)

1

g2
= 4

∫

dk2

(2π)2
σ2
0 + s2 + c21c

2
2

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
. (39)

By removing σ0 in these equations, we derive the phase boundary Mc(g
2). The result is

shown in Fig. 4.

Here again A stands for the parity symmetric phase (π0 = 0) and B for Aoki phase

(π0 6= 0). In the large coupling region there are two phase boundaries while there are four

phase boundaries in the weak coupling region. The left cusp corresponds to one of two tastes

with m = 1, and the right corresponds to the other taste with m = −1. Thus the phase

diagram reflects the mass splitting of tastes given by the Adams-type flavored mass. We

also check the pion mass becomes zero on the second order phase boundary as

m2
π ∝ 〈

δ2Seff

δπnδπm
〉|M=Mc

= V
δ2S̃eff

δ2π2
0

|M=Mc
= 0. (40)

Now let us consider the parity phase structure in the d = 4 QCD with the staggered fermion

with this flavored mass. Considering the case of the Wilson fermion we can speculate it is
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FIG. 4: Aoki phase structure for the staggered fermion with the Adams-type flavored mass Γ5Γ55.

The left and right cusps correspond to one of two tastes with m = 1 and the other with m = −1.

A stands for a parity symmetric phase and B for Aoki phase.

qualitatively similar to our result for the d = 2 Gross-Neveu model except the number of

species associated with each cusp. In the four dimension, four tastes in the staggered fermion

with the Adams-type flavored mass split into two with positive mass and the other two with

negative mass depending on their flavor-chiralities. Thus each of the cusps in the phase

diagram will correspond to two tastes. If we consider another type of the flavored mass term

proposed in [19], the four tastes are split into one with positive mass, two with zero mass

and the other with negative mass. If we can take the chirally symmetric continuum limit

around the cusps, we obtain the two- or one-flavor staggered fermions with only the mass

parameter being fine-tuned, which will be numerically faster than Wilson fermion. Thus

the question here is whether we can take the massless continuum limit. We will discuss this

point in the next section with starting with the case of the naive fermion.

IV. CONTINUUM LIMIT

In this section we discuss the continuum limit of the naive and staggered Gross-Neveu

models with the flavored masses discussed in Sec. II and Sec. III. This analysis gives us

important informations on the continuum limit of the d = 4 QCD with these fermions. As

is well-known, the chiral symmetry is realized in the effective potential of the Gross-Neveu

model as the O(2) rotational symmetry about σ0 and π0. The purpose here is to figure out

the fine-tuned values of the mass and couplings to recover this symmetry for a→ 0. We note
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in order to take the chirally symmetric continuum limit in this model, we need to introduce

two independent couplings g2σ and g2π [3] as we will see later. The strategy is to expand the

fermion determinant in the effective potential with respect to the lattice spacing a following

the process in [3].

We first consider the case of the naive fermion with one of the flavored masses M
(1)
f =

cos k1 cos k2. The effective potential in this case with the lattice spacing being explicit is

given by

S̃eff(σ0, π0) =
(σ0 −M)2

2g2σ
+

π2
0

2g2π
− I, (41)

I =

∫ π/a

−π/a

d2k

(2π)2
log[(σ0 +

1

a
cos k1a cos k2a)

2 + π2
0 +

∑

µ

sin2 kµa

a2
]. (42)

Now we divide the terms in the determinant I into O(1/a2) and O(1/a) parts as

I(D0, D1) =

∫ π/a

−π/a

d2k

(2π)2
log[D0 +D1], (43)

D0 ≡
∑

µ

sin2 kµa

a2
+ (σ0 −

α

a
)2 + π2

0 +
(α + cos k1a cos k2a

a

)2

. (44)

D1 ≡ 2(σ0 −
α

a
)
(α + cos k1a cos k2a

a

)

. (45)

where we introduce a constant α since there is arbitrariness about how to divide the terms

into O(1/a2) and O(1/a) parts. This is determined by which cusp you choose in Fig. 1, or

equivalently which species you want to make massless in the continuum limit. Here we fix

α = −1 which is related to the left cusp or the continuum limit with the massless species

(0, 0) and (π, π). (With α = 1 we can discuss the other cusp while we will discuss α = 0

in the end of this section.) Here we use the shifted definition of σ0 as σ0 + 1/a → σ0 for

simplicity for a while. Then the effective potential with this shift is given by

S̃eff(σ0, π0) =
(σ0 − (M + 1/a))2

2g2σ
+

π2
0

2g2π
− I(D0, D1). (46)

D0 =
∑

µ

sin2 kµa

a2
+ σ2

0 + π2
0 +

(−1 + cos k1a cos k2a

a

)2

. (47)

D1 = 2σ0

(−1 + cos k1a cos k2a

a

)

. (48)
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We expand I by D1/D0 or equivalently by the lattice spacing a,

I = I0 +
∑

n=1

In, (49)

I0 =

∫ π/a

−π/a

d2k

(2π)2
logD0, (50)

In = −
(−1)n

n

∫ π/a

−π/a

d2k

(2π)2
Dn

1

Dn
0

(n ≥ 1),

= −
(−1)n

n
(2σ0)

nan−2

×

∫ π

−π

d2ξ

(2π)2
(−1 + cos ξ1 cos ξ2)

n

(
∑

µ sin
2 ξµ + (−1 + cos ξ1 cos ξ2)2 + a2(σ2

0 + π2
0))

n
, (51)

where we introduce the dimensionless momentum ξµ = kµa. For a→ 0, only the I0, I1 and

I2 remains nonzero. I0(a→ 0), I1(a→ 0) and I2(a→ 0) are given by

I0(a→ 0) = C̃0(σ
2
0 + π2

0)−
1

2π
(σ2

0 + π2
0) log

a2(σ2
0 + π2

0)

e
(C̃0 = 0.367), (52)

I1(a→ 0) =
2σ0
a
C1 (C1 = −0.446), (53)

I2(a→ 0) = −2σ2
0C2 (C2 = 0.201). (54)

From here we basically do not care about the O(a) corrections. Here we show the explicit

values of C̃0, C1 and C2 since they will be essential for the discussion later. The details of

the calculations are shown in Appendix A1. Now let us discuss the continuum limit of this

theory. Including all the nonzero contributions for a→ 0, the effective potential is given by

S̃eff = −
(M + 1/a

g2σ
+

2

a
C1

)

σ0 +
( 1

2g2π
− C̃0 +

1

2π
log a2

)

π2
0

+
( 1

2g2σ
− C̃0 + 2C2 +

1

2π
log a2

)

σ2
0 +

1

4π
(σ2

0 + π2
0) log

σ2
0 + π2

0

e
. (55)

This indicates we need two independent couplings g2σ, g
2
π to recover the O(2) symmetry

toward the continuum limit. In addition, getting rid of the σ0 linear term leads to the

massless limit. Then the natural fine-tuned parameters for the chirally symmetric continuum

limit without O(a) corrections are given by

M = −
2g2σ
a
C1 − 1, (56)

g2π =
g2σ

4C2g2σ + 1
, (57)
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where Eq. (56) is obtained by imposing the coefficient of σ0 and Eq. (57) is given by imposing

the coefficients of σ2
0 and π2

0 coincide. To consider a renormalized theory with the chiral

symmetry we introduce the scale parameter (Λ-parameter) as

Λa = exp
[

πC̃0 − 2πC2 −
π

2
g2σ

]

. (58)

With the natural fine-tuning (57), this definition of Λ leads to the coupling renormalization

including a given by

1

2g2σ
= C̃0 − 2C2 +

1

2π
log

(

1

Λ2a2

)

, (59)

1

2g2π
= C̃0 +

1

2π
log

(

1

Λ2a2

)

. (60)

Here we need to keep Λ finite when we take the continuum limit a → 0. Then the renor-

malized effective potential with the chiral symmetry in the continuum limit is given by

S̃eff =
1

4π
(σ2

0 + π2
0) log

σ2
0 + π2

0

eΛ2
(61)

We note the fine-tuned point (M(g2σ), g
2
π(g

2
σ)) in (56)(57) specifies the line along which the

continuum limit should be taken.

Let us look at these fine-tuned parameters in terms of the phase diagram. By this we

can verify our fine-tuning yields the correct continuum limit. We first consider the non-zero

value of g2σ as g2σ = 0.6 to reveal properties of the phase diagram. By hiding the lattice

parameter with a = 1 the fine-tuned point (M(0.6), g2π(0.6)) is given by

M(g2σ = 0.6) = −0.464, (62)

g2π(g
2
σ = 0.6) = 0.404. (63)

Now we consider theM-g2π phase diagram with g2σ = 0.6. According to the case of the Wilson

Gross-Neveu model [6], the phase boundary has a self-crossing point and the fine-tuned point

is located slightly inside and below the self-crossing point in the parity symmetric phase.

Besides the phase boundary naively derived from the gap equations no longer describes

the true one near the self-crossing point, and we need study the effective potential to find

the true critical lines including the 1st order ones. Here we will show these situations are
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common with our cases. The gap equations for the two couplings are given by

Mc = σ0

(

1−
g2σ
g2π

)

− 2g2σ

∫

d2k

(2π)2
M

(1)
f (k)

(σ0 +M
(1)
f (k))2 + s2

, (64)

1

g2π
= 2

∫

d2k

(2π)2
1

(σ0 +M
(1)
f (k))2 + s2

, (65)

Here we come back to the unshifted definition of σ0. In Fig. 5 and Fig. 6 we depict the

Mc(g
2
π) phase boundary derived from the gap equations (64)(65) for g2σ = 0.6. The latter is

an expanded one near the self-crossing point with the true phase boundaries. In the both

figures a crosspoint stands for the fine-tuned point without O(a) corrections (62)(63). It is

located slightly to the right and below the self-crossing point near the second order phase

boundary. We note this region is the parity-unbroken phase. The qualitative properties

of this phase diagram remain toward g2σ → 0 where the whole structure moves down to

g2π = 0. The fine-tuned point (56)(57) gets close to (M, g2π) → (−1, 0) from the parity

symmetric phase. The continuum limit along this fine-tuned point yields two massless

fermions originated in two species (0, 0)(π, π). Thus (56)(57) lead to the continuum theory

with the chiral symmetry and two massless fermions.

Now we discuss the first order phase transition. Although it is not essential for our

purpose because in the limit g2σ → 0 the 1st-order phase boundary disappears and the

entire phase boundary becomes of 2nd order, we can reveal other aspects of our fermions by

investigating it. As shown in [6] there are two kinds of the 1st order phase boundaries in the

case of Wilson fermion. One is the parity phase boundary, across which π0 at the minimum

of the effective potential changes from zero to nonzero. The other is related to σ0, across

which the sign of σ0 at the minimum of the potential changes discontinuously. Now we will

show both of them exist also in our case. We numerically calculate the effective potential in

Eq. (42) and search the minimum of the potential. In Fig. 6 we depict the appearance of the

1st order phase boundaries. Here we note the true parity phase boundary of 2nd order as

a blue solid line coincides with the naively derived phase boundary as a blue dotted line at

the both sides of the self-crossing. Then the 2nd-order one coming from the left converts to

the 1st-order at some point, which is spilled out from the naively derived boundary. It ends

at the point encountering the naively derived one again. The 1st-order phase boundary for

σ0 starts from this point, going down straight, and ends at g2π = 0. In Fig. 7 we depict the

order parameter π0 as a function of M for some fixed values of g2π around which the order
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FIG. 5: The naively derived phase boundary M(g2π) for the naive fermion with M
(1)
f with g2σ = 0.6.

The fine-tuned point (−0.464, 0.404) as a crosspoint is located near the self-crossing point.

changes in Fig. 6. Here we verify the order of the transition changes from the 2nd to the 1st

about the point. In Fig. 8 we depict the σ0 potential for several values of M crossing the

σ0 phase boundary. (Here we can take π0 = 0 since it is the parity symmetric phase.) The

value of σ0 at the minimum changes from σ0 > −1 to σ0 < −1 in a form of the 1st-order

phase transition. Indeed the potential describing these 1st-order transitions is also obtained

by taking account of O(a) corrections. The contribution from the correction δS̃eff is given

by

δS̃eff = −
8

3
C3σ

3
0 + 2σ0(σ

2
0 + π2

0)

(

C̃1 +
1

4π
log

σ2
0 + π2

0

e

)

, (66)

with C3 = −0.0923 and C̃1 = −0.0741. We can qualitatively reproduce the above results

from the effective potential with these corrections. We can obtain the same but reversed

phase structure for the right cusp by choosing α = 1/a in (44)(45). We also note the

sign of σ0 continuously changes at M = 0. It is related with the discrete chiral symmetry

(σ0 → −σ0) of the effective action (42) for M = 0 up to a irrelevant sign. This symmetry

indicates interesting possibility of another continuum limit corresponding to the case of

α = 0 in (44)(45). We will discuss details on this topic in the end of this section.

In Fig. 9 and 10 we depict the corresponding figures for the flavored mass M
(1)
f +M

(2)
f .

We take g2σ = 1.2 to make the structure enhanced, where the fine-tuned point for the left

cusp is given by (M, g2π) = (−2.205, 0.720). The results are qualitatively the same as the

previous case. In this case the continuum limit along with the fine-tuned point leads to the

single-flavor theory with one of the species at (0, 0).

We apply the same approach to the staggered Gross-Neveu model with the Adams-type
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FIG. 6: An expanded version of Fig. 5. A blue dotted curve is the naively derived phase boundary.

The true phase boundaries are composed of the three parts. The fine-tuned point as a cross point

is located slightly to the right and below the self-crossing point.
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FIG. 7: The order parameter π0 as a function of M for g2π = 0.41, 0.42, 0.43 where the order of

transition changes from 1st to 2nd in Fig. 6.
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FIG. 8: The σ0 potential for several values of M crossing the σ0 boundary in Fig. 6. The value of

σ0 at the minimum changes from σ0 > −1 to σ0 < −1 in a form of the 1st-order transition.
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FIG. 9: The naively derived phase boundary Mc(g
2
π) in the case of the naive fermion with M

(1)
f +

M
(2)
f for g2σ = 1.2. The fine-tuned point (−2.205, 0.720) as a crosspoint is located near the self-

crossing point.
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FIG. 10: An expanded version of Fig. 9. A blue dotted curve is the naively derived phase boundary.

The true phase boundaries are composed of the three parts. The fine-tuned point is located slightly

to the right and below the self-crossing point.

flavored mass in Eq. (25). As seen in Eq. (35), the determinant in the logarithm in the

effective action is given by the product of two determinants of the naive fermions with the

mass ±Mf = ± cos(k1/2) cos(k2/2). Thus we only have to add the contributions from the

two sectors. Here we take the constant α as α = −1/a and redefine σ0 + 1/a → σ0 for a

while. With this choice we can discuss the left cusp related to the taste with the positive



21

flavor-chirality. Then the effective potential with the σ0 shift is given by

S̃eff(σ0, π0) =
(σ0 − (M + 1/a))2

2g2σ
+

π2
0

2g2π
− I+ − I−, (67)

I± =

∫ π/a

−π/a

d2k

(2π)2
log[D±

0 +D±
1 ], (68)

D±
0 =

∑

µ

sin2 kµa

2

a2
+ σ2

0 + π2
0 +

(−1 ± cos k1a
2
cos k2a

2

a

)2

. (69)

D±
1 = 2σ0

(−1± cos k1a
2
cos k2a

2

a

)

. (70)

We expand I with respect to D1/D0 as

I± = I±0 +
∑

n=1

I±n , (71)

I±0 =

∫ π/a

−π/a

d2k

(2π)2
logD±

0 , (72)

I±n = −
(−1)n

n

∫ π/a

−π/a

d2k

(2π)2
(D±

1 )
n

(D±
0 )

n
(n ≥ 1), (73)

For the continuum limit a→ 0, only the I±0 , I
±
1 and I±2 remains nonzero as in the previous

case.

I+0 + I−0 = C̃0(σ
2
0 + π2

0)−
1

π
(σ2

0 + π2
0) log

4a2(σ2
0 + π2

0)

e
(C̃0 = 1.177), (74)

I+1 + I−1 =
2σ0
a
C1 (C1 = −0.896), (75)

I+2 + I−2 = −2σ2
0C2 (C2 = 0.404). (76)

Details of calculations are shown in Appendix A2. The effective potential and the fine-

tuned point without O(a) corrections (M(g2σ), g
2
π(g

2
σ)) are given by the same equations in

Eqs. (55)-(61) except the slight deviation of the logarithmic terms. In this case we take

g2σ = 0.4, then the fine-tuned point is given by

M(g2σ = 0.4) = −0.286, (77)

g2π(g
2
σ = 0.4) = 0.243. (78)

The gap equations in this case are given by

Mc = σ0

(

1−
g2σ
g2π

)

+ 8g2σσ0

∫

dk2

(2π)2
c21c

2
2

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
, (79)

1

g2π
= 4

∫

dk2

(2π)2
σ2
0 + s2 + c21c

2
2

((σ0 + c1c2)2 + π2
0 + s2)((σ0 − c1c2)2 + π2

0 + s2)
. (80)
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Here we come back to the unshifted definition of σ0. In Fig. 11 and Fig. 12 we depict the

phase boundary M(g2π) naively derived from the above gap equations for g2σ = 0.4. The

latter is an expanded one near the self-crossing point with the true phase boundaries also

depicted. The fine-tuned point (77)(78) is located slightly to the right and below the self-

crossing point near the true second order phase boundary in the parity symmetric phase.

Toward the week-coupling limit g2σ → 0 the phase structure moves down to g2π = 0, where the

fine-tuned point gets close to (M, g2π) → (−1, 0) from the parity symmetric phase. It means

our fine-tuned point leads to the correct continuum theory with the chiral symmetry and

one massless fermion corresponding to the taste with positive flavor-chirality. The situation

about the first order phase boundary is the same as the naive case. In Fig. 12 we depict

the true phase boundaries for this case. In Fig. 13 we depict the order parameter π0 as a

function of M . Here the order of the transition changes from the 2nd to the 1st around the

order-changing point. In Fig. 14 we depict the σ0 potential for several values of M crossing

the σ0 phase boundary. The value of σ0 at the minimum changes from σ0 > −1 to σ0 < −1

in a form of the 1st-order phase transition.

We have shown that the chirally-symmetric continuum limit can be taken by fine-tuning

a mass parameter and two coupling constants both for the naive and staggered cases. It

indicates we can obtain the two-flavor or one-flavor staggered fermions by tuning only a

mass parameter without rooting if we implement the Adams-type [18] or Hoelbling-type

[19] flavored masses in d = 4. The less numerical expense in the staggered fermion could

make the QCD simulations with these fermions faster than Wilson fermion. We need further

investigation to answer this question.

Now we comment on the case that we take α = 0 in (44)(45), which corresponds to neither

of the cusps but reflects the symmetries of the effective potential. At this point the coupling

is not going to zero, and thus it is unclear how it is related to the continuum Gross-Neveu

model. However it does seem to be possible to restore chiral symmetry there and have a

divergent correlation length. As such it seems related to a quite special continuum limit.

Since theM = 0 effective potentials for the naive withM
(1)
f and the staggered fermions with

the Adams-type mass possess the Z2 discrete chiral symmetry (σ0 → −σ0) up to a irrelevant

sign, the renormalization in the linear σ0 term is prohibited. Actually we have checked C1

in the effective potentials as (55) is zero for both cases with α = 0. This is because the

continuum chiral symmetry is broken while the discrete one is unbroken by these flavored
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FIG. 11: The naively derived phase boundary Mc(g
2
π) for the staggered fermion with the Adams-

type mass with g2σ = 0.4. The fine-tuned point (−0.286, 0.243) as a crosspoint is located near the

self-crossing point.
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FIG. 12: The expanded version of Fig. 11. A blue dotted curve is the naively derived phase

boundary. The true phase boundaries are composed of the three parts. The fine-tuned point is

located slightly to the right and below the self-crossing point.
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FIG. 13: The order parameter π0 as a function of M for g2π = 0.25, 0.26, 0.27, 0.28 where the order

of transition changes from 1st to 2nd in Fig. 12.
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FIG. 14: The σ0 potential for several values of M crossing the σ0 boundary in Fig. 12. The value

of σ0 at the minimum changes from σ0 > −1 to σ0 < −1 in a form of the 1st-order transition.

masses. Thus, if we start with M = 0, it appears we need not fine-tune the mass parameter

for the massless continuum limit with the chiral symmetry. It indicates a strange possibility

that the chirally symmetric continuum limit of the d = 4 QCD with these fermions is taken

without fine-tuning due to this symmetry. This strange situation can occur for any flavored

mass with the discrete chiral symmetry up to a trivial sign such asMf =
∑

µ cos kµ. However

the question is whether the continuum limit stands for physically relevant theories. Indeed

it is unlikely since the line M = 0 is located at the same distance from the two cusps thus

the continuum limit along it would have no physical fermions, although there might exist

some relevant theory without fermions like the Ising theory. On the other hand, in the naive

fermion with M
(2)
f or the d = 4 staggered fermion with the mass proposed by Hoelbling

in [19], the M = 0 line has a cusp in the weak coupling region. The effective actions in

these cases also have the discrete chiral symmetry and the same situation occurs. Thus,

the continuum limit without fine-tuning in them may lead to the relevant theories with

the parity symmetry being broken since the continuum limit is taken from the Aoki phase

in these cases. This kind of the parity or CP broken theory with massless fermions would

belong to the same universality class as minimally doubled fermions [23, 24] or the two-flavor

QCD with the sign of mass being different between the two flavors [28]. Further study on

this topic is devoted to the future work.
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V. SUMMARY AND DISCUSSION

In this paper we investigate the parity-broken phase structure for naive and staggered

fermions with the flavored mass by using the two-dimensional lattice Gross-Neveu models.

We have shown the Aoki phase exists both in staggered and naive cases reflecting the mass

splitting in species.

In Sec. II we study the phase structure for the naive Gross-Neveu model with the flavored

masses. We consider the two types of flavored mass terms for 2d naive fermions, which cause

two different kinds of mass splitting in species. We also consider a linear combination of

these terms. We solve the gap equations for the large N limit and obtain the second order

phase boundaries in the M-g2 plane. The parity broken phase diagram has some common

properties with the Wilson case, and reflects the mass splitting. We can make varieties of

phase structures depending on arbitrary linear combinations of the two types of the masses.

In Sec. III we consider the generalized staggered Gross-Neveu model including two types

of four-point interactions. We take the same process as in the case of the naive fermion

to obtain the phase diagram for the staggered fermion with the Adams-type flavored mass.

We show the Aoki phase exists also in this case reflecting the mass splitting of tastes. This

elucidation can contribute to the practical application of these fermions and their overlap

versions. In Sec. IV we discuss the continuum limit of these Gross-Neveu models around the

cusps in the phase digram. We show that the chirally-symmetric continuum limit with the

number of massless species associated with each of the cusps can be taken by fine-tuning

a mass parameter and two coupling constants in both cases. From this we speculate the

continuum limit of d = 4 lattice QCD with these fermions can be taken by fine-tuning a

mass parameter close to the second-order phase boundary. It indicates we can obtain the

two- or one-flavor staggered fermions when we introduce the Adams-type [18] or Hoelbling-

type [19] flavored masses. These approaches avoid the use of the rooting approximation to

reduce the number of tastes. We also study the first order phase boundaries peculiar to the

two-coupling cases of the lattice Gross-Neveu models. We show there exist two kinds of the

first order phase boundaries with respect to parity and chiral symmetry breaking as in the

case of Wilson fermion.

We comment on the possible advances of the one-flavor or two-flavor staggered fermions

without rooting discussed in this paper compared to Wilson fermion. Taking account of
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less numerical expense in the staggered fermion, it will be numerically better than Wilson

fermion in the lattice QCD simulations. We can estimate how good it is easily by calculating

simple examples. Future works will be devoted to this study.
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Appendix A: Derivation of the effective potentials

In this appendix we evaluate the integrals which are required for the effective potentials

for the cases with the naive and staggered fermions.

1. Naive fermion

We have to evaluate the integrals of (50) and (51) to obtain the effective potential of the

model with the naive fermion. Let us first study the following integral,

I0 =

∫ π/a

−π/a

d2k

(2π)2
log

[

s2

a2
+ σ2

0 + π2
0 +

(

−1 +Mf

a

)2
]

, (A1)

where we denote s2 =
∑

µ sin
2(kµa) and Mf = cos(k1a) cos(k2a). If we omit a constant term

which is not involving σ0 and π0, it can be rewritten in an integral representation as

I0 ≃

∫ σ2
0
+π2

0

0

dρ F0(ρ), (A2)

F0(ρ) =

∫ π/a

−π/a

d2k

(2π)2
1

s2/a2 + (−1 +Mf )2/a2 + ρ
. (A3)
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We pick up the divergent part in the limit of a→ 0,

F0(ρ)
a→0
−→

∫ 3π/(2a)

−π/(2a)

d2k

(2π)2

(

1
∑

µ k
2
µ + ρ

+
1

∑

µ(kµ − π)2 + ρ

)

+ c0, (A4)

c0 =

∫ 3π/2

−π/2

d2ξ

(2π)2

(

1

s2 + (−1 +Mf)2
−

1
∑

µ ξ
2
µ

−
1

∑

µ(ξµ − π)2

)

(= 0.0421) .(A5)

Here we shift the Brillouin zone to treat the divergent part, which originates from two

massless modes around k = (0, 0) and (π, π). We then find the following expression by

comparing the first term with the corresponding integral in the continuum theory,

∫ 3π/(2a)

−π/(2a)

d2k

(2π)2

(

1
∑

µ k
2
µ + ρ

+
1

∑

µ(kµ − π)2 + ρ

)

=
1

2π
log

1

a2ρ
+ c′0 (c′0 = 0.325) . (A6)

Therefore the integral is given by

F0(ρ) =
1

2π
log

1

a2ρ
+ C̃0

(

C̃0 = 0.367
)

, (A7)

where C̃0 = c0 + c′0 is the constant used in (52). By substituting this into (A2), we obtain

the expression in (52)

I0(a→ 0) = C̃(σ2
0 + π2

0)−
1

2π
(σ2

0 + π2
0) log

a2(σ2
0 + π2

0)

e
. (A8)

Next we show the integral expressions of (53) and (54). They are given by

C1 =

∫ π

−π

d2ξ

(2π)2
−1 +Mf

s2 + (−1 +Mf )2
(= −0.446), (A9)

C2 =

∫ π

−π

d2ξ

(2π)2

(

−1 +Mf

s2 + (−1 +Mf )2

)2

(= 0.201). (A10)

These integrals are sufficient to consider the continuum limit of the model, but not to discuss

the 1st-order phase transition. The O(a) corrections come from the following integrals,

I3(a→ 0) =
8

3
σ3
0aC3, C3 =

∫ π

−π

d2ξ

(2π)2

(

−1 +Mf

s2 + (−1 +Mf )2

)3

(= −0.0923), (A11)

δI1 = I1 −
2σ0
a
C1

= 2σ0

∫ π/a

−π/a

d2k

(2π)2

(

(−1 +Mf )/a

s2/a2 + (−1 +Mf )2/a2 + σ2
0 + π2

0

−
(−1 +Mf )/a

s2/a2 + (−1 +Mf )2/a2

)

= −2σ0a

∫ σ2
0
+π2

0

0

dρ F1(ρ), (A12)

F1(ρ) =
1

a

∫ π/a

−π/a

d2k

(2π)2
(−1 +Mf )/a

(s2/a2 + (−1 +Mf )2/a2 + ρ)2
. (A13)
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We can evaluate the second one in a similar way by splitting into a divergent part and a

finite constant,

F1(ρ)
a→0
−→ −

1

2

∫ 3π/(2a)

−π/(2a)

d2k

(2π)2







∑

µ k
2
µ

(

∑

µ k
2
µ + ρ

)2 +

∑

µ(kµ − π)2

(

∑

µ(kµ − π)2 + ρ
)2






+ c1 (A14)

c1 =

∫ 3π/2

−π/2

d2ξ

(2π)2

(

(−1 +Mf )

(s2 + (−1 +Mf)2)2
+

1

2
∑

µ ξ
2
µ

+
1

2
∑

µ(ξµ − π)2

)

(= 0.00912) .

(A15)

The divergent part is given by

∫ 3π/(2a)

−π/(2a)

d2k

(2π)2







∑

µ k
2
µ

(

∑

µ k
2
µ + ρ

)2 +

∑

µ(kµ − π)2

(

∑

µ(kµ − π)2 + ρ
)2






=

1

2π
log

1

a2ρ
+ c′1 (c′1 = 0.166).

(A16)

Thus we obtain

F1(ρ) = −
1

4π
log

1

a2ρ
+ C̃1

(

C̃1 = c1 −
c′1
2

= −0.0741

)

. (A17)

By substituting this expression into (A12), we obtain

δI1 = −2σ0a

[

C̃1(σ
2
0 + π2

0) +
1

4π
(σ2

0 + π2
0) log

a2(σ2
0 + π2

0)

e

]

. (A18)

These integrals contribute to the O(a) corrections to the effective potential (66).

2. Staggered fermion

We evaluate the integrals required for the effective potentials with the staggered fermion.

Explicit forms of the finite constants in (75) and (76) are simply given by

C1 =

∫ π

−π

d2ξ

(2π)2

[

−1 +Mf

s2 + (−1 +Mf )
+

−1−Mf

s2 + (−1 −Mf )

]

(= −0.896), (A19)

C2 =

∫ π

−π

d2ξ

(2π)2

[

(

−1 +Mf

s2 + (−1 +Mf )

)2

+

(

−1−Mf

s2 + (−1 −Mf )

)2
]

(= 0.404), (A20)

where we use similar symbols as the naive fermion case, s2 =
∑

µ sin
2(kµa/2), Mf =

cos(k1a/2) cos(k2a/2).
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The integral (74) is slightly complicated, but can be evaluated in a similar manner.

Omitting a constant term independent on σ0 and π0, it can be written as

I+0 =

∫ π/a

−π/a

d2k

(2π)2
log

[

s2

a2
+ σ2

0 + π2
0 +

(

−1 +Mf

a

)2
]

≃

∫ σ2
0
+π2

0

0

dρ F (ρ), (A21)

F (ρ) =

∫ π/a

−π/a

d2k

(2π)2
1

s2/a2 + (−1 +Mf)2/a2 + ρ
. (A22)

We can split this integral into a divergent part and a finite constant in the limit of a→ 0,

F (ρ)
a→0
−→

∫ π/a

−π/a

d2k

(2π)2
1

∑

µ k
2
µ/4 + ρ

+ c+0 ,

c+0 =

∫ π

−π

d2ξ

(2π)2

(

1

s2 + (−1 +Mf )2
−

1
∑

µ ξ
2
µ/4

)

(= 0.0440) . (A23)

The divergent part is given by

∫ π/a

−π/a

d2k

(2π)2
1

∑

µ k
2
µ/4 + ρ

=
1

π
log

1

4a2ρ
+ C+

0
′
(

C+
0
′
= 0.798

)

. (A24)

Thus we obtain

F (ρ) =
1

π
log

1

4a2ρ
+ C̃+

0

(

C̃+
0 = C+

0 + C+
0
′
= 0.842

)

. (A25)

The corresponding integral becomes

I+0 (a→ 0) = C̃+
0 (σ

2
0 + π2

0)−
1

π
(σ2

0 + π2
0) log

4a2(σ2
0 + π2

0)

e
. (A26)

The other integral is written as

I−0 ≃ C−
0 (σ

2
0 + π2

0) +O(a), (A27)

C−
0 =

∫ π

−π

d2ξ

(2π)2
1

s2 + (1 +Mf)2
(= 0.333) (A28)

where we again omit a constant independent on σ0 and π0. As a result we obtain the

expression of (74),

I+0 + I−0 = C̃0(σ
2
0 + π2

0)−
1

π
(σ2

0 + π2
0) log

4a2(σ2
0 + π2

0)

e

(

C̃0 = C̃+
0 + C−

0 = 1.177
)

. (A29)
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(2008) [arXiv:0712.4401].

[24] P. F. Bedaque, M. I. Buchoff, B. C. Tiburzi and A. Walker-Loud, Phys. Lett. B 662,

449 (2008) [arXiv:0801.3361]; Phys. Rev. D 78, 017502 (2008) [arXiv:0804.1145]; S. Cap-

itani, J. Weber, H. Wittig, Phys. Lett. B 681, 105 (2009) [arXiv:0907.2825]; T. Kimura

and T. Misumi, Prog. Theor. Phys. 124, 415 (2010) [arXiv:0907.1371]; Prog. Theor. Phys.

123, 63 (2010) [arXiv:0907.3774]; S. Capitani, M. Creutz, J. Weber, H. Wittig, JHEP

1009, 027 (2010) [arXiv:1006.2009]; M. Creutz and T. Misumi, Phys. Rev. D 82, 074502



31

(2010) [arXiv:1007.3328]; T. Misumi, M. Creutz and T. Kimura, PoS Lattice2010 (2010) 260

[arXiv:1010.3713].

[25] M. Creutz, PoS Lattice2010 (2010) 078 [arXiv:1009.3154].

[26] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).

[27] T. Eguchi and R. Nakayama, Phys. Lett. B 126, 89 (1983).

[28] M. Creutz, Phys. Rev. Lett. 92, 201601 (2004) [arXiv:hep-lat/0312018]; Phys. Rev. Lett. 92,

162003 (2004) [arXiv:hep-ph/0312225].


	I Introduction
	II Naive Gross-Neveu model
	A Mf(1)
	B Mf(2)
	C Mf(1)+Mf(2)

	III Staggered Gross-Neveu model
	IV Continuum limit
	V Summary and Discussion
	 Acknowledgments
	A Derivation of the effective potentials
	1 Naive fermion
	2 Staggered fermion

	 References

